Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
This software calculates the microphysical process rates
needed for the single category ice description.
Author: Remo Dietlicher, 2018
---------------------------------------------------------------------------------------------------------------
| Dependencies |
---------------------------------------------------------------------------------------------------------------
numpy, scipy, matplotlib, datetime, argparse, iris, netCDF4
---------------------------------------------------------------------------------------------------------------
| Example usecase |
---------------------------------------------------------------------------------------------------------------
Compare LWP from ECHAM to satellite product (MAC-LWP):
satellite_compare.py mac_lwp.nc cloudslwp multi_annual_means_from_echam.nc LWP
Compare 3D cloud fractions from ECHAM to satellite product (CALIPSO-GOCCP):
satellite_compare.py 3D_CloudFraction_avg_timemean.nc clcalipso echam_on_hl.nc aclcac
Generate ice fraction to temperature histogram:
sat_phase_fraction.py generate 2007/3D_CloudFraction_Temp330m_2007_night_CFMIP2_sat_3.1.2.nc
sat_phase_fraction.py generate 20*/3D_CloudFraction_Temp330m_*_night_CFMIP2_sat_3.1.2.nc
Show ice fraction to temperature histogram:
sat_phase_fraction.py show 2007/3D_CloudFraction_Temp330m_2007_night_CFMIP2_sat_3.1.2_histogram.npy
sat_phase_fraction.py show 20*/3D_CloudFraction_Temp330m_*_night_CFMIP2_sat_3.1.2_histogram.npy
---------------------------------------------------------------------------------------------------------------
| Directory contents |
---------------------------------------------------------------------------------------------------------------
* sat_phase_fraction.py: can be run in two modes:
* generate: generates a npy file containing phase ratio histograms from raw satellite overpasses
* show: produces a ice fraction - temperature histogram based on pre-computed histogram npy-files.
* satellite_utils.py: multiple utility functions needed to deal with satellite data such as functions
to compute gridbox areas from lat-lon vectors and date utilities.
* sub_cubes.py: module facilitating the use of iris.cube objects with ECHAM or satellite data. Cubes
provide easy functionality to interpolate 3D data onto different grid, as it is needed
when comparing model and satellite data.
* satellite_compare.py: simple application of the sub_cubes.py module. Takes a field from satellite
data and model data, interpolates everything on the model grid and then
computes differences between the two datasets and shows a figure for each of
these components: 1) satellite data, 2) model data, 3) differences.